分离变量法是将一个偏微分方程分解为两个或多个只含一个变量的常微分方程。将方程中含有各个变量的项分离开来,从而将原方程拆分成多个更简单的只含一个自变量的常微分方程。
将方程中含有各个变量的项分离开来,从而将原方程拆分成多个更简单的只含一个自变量的常微分方程。运用线性叠加原理,将非齐次方程拆分成多个齐次的或易于求解的方程。利用高数知识、级数求解知识,以及其他巧妙的方法,求出各个方程的通解。最后将这些通解“组装起来”。
扩展资料
分离变量法的理论基础之一是线性叠加原理,故其只能解决线性定解问题。在用分离变量法的过程中多次应用叠加原理,不仅方程的解是所有特解的线性叠加,而且处理非齐次方程泛定方程问题时,把方程条件也视为几种类型叠加的结果,从而将其“分解” 。
对于线性叠加原理,其物理表述为:“几个物理量共同作用产生的结果,等效于各个物理量单独作用时各自产生效果的总和”。
参考资料来源:
一阶微分方程中既有变量X,Y的函数,又有他们的微分dx,dy,能把变量x以及他的一元函数和他的微分dx放到方程的一端,将能把变量y以及他的一元函数和他的微分dy放到方程的一端,这样的微分方程就叫可分离变量方程。两端分别积分得到微分方程的解的解法就叫分离变量法。
分离变量法是将一个偏微分方程分解为两个或多个只含一个变量的常微分方程。
将方程中含有各个变量的项分离开来,从而将原方程拆分成多个更简单的只含一个自变量的常微分方程。运用线性叠加原理,将非齐次方程拆分成多个齐次的或易于求解的方程。利用高数知识、级数求解知识,以及其他巧妙的方法,求出各个方程的通解。最后将这些通解“组装起来”。分离变量法是求解波动方程初边值问题的一种常用方法。
例如
标签:变量,分离