当前位置:百问十五>百科问答>抽屉原理练习题

抽屉原理练习题

2024-06-04 21:54:58 编辑:join 浏览量:626

抽屉原理练习题

大家有学过抽屉原理吗?下面小编收集了抽屉原理练习题,大家一起来做练习题吧!

1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?

2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有3张牌有相同的点数?

3.有11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同

4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜。试证明:一定有两个运动员积分相同。

5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?

6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的.女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人数为多少人?

7.有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出多少只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。

8.一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了多少堆?

9.从1,3,5,……,99中,至少选出多少个数,其中必有两个数的和是100。

10.某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有多少人带苹果。

11.某个年级有202人参加考试,满分为100分,且得分都为整数,总得分为10101分,则至少有多少人得分相同?

12.2006名营员去游览长城,颐和园,天坛。规定每人最少去一处,最多去两处游览,至少有几个人游览的地方完全相同?

13.某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,则至少有多少人植树的株数相同?

答案:

1.将红、黄、蓝三种颜色看作三个抽屉,为保证取出的球中有两个球的颜色相同,则最少要取出4个球。3×(2-1)+1=4

2.将14种点数看作是14个抽屉,最少要抽取29张牌,方能保证其中至少有3张牌有相同的点数。14×(3-1)+1=29(扑克牌中的点数说明:A--K分别为1—13点,大小王点数相同,共14种点数。)

3.证明:A、B、C、D四类书,根据题目条件,这些学生借书的组合可能有十种,分别是:A、B、C、D、AB、AC、AD、BC、BD、CD

因为有11名学生到老师家借书,而只有10种借书情况,将这十种借书情况看作是十个抽屉,因此必有两个学生所借的书的类型相同。11÷10=1......1 1+1=2

4.证明,所谓单循环赛即每个运动员都与其它运动员进行一场比赛。即每个人要参加49场比赛,这样如果假设没有运动员积分相同,因为没有全胜,则运动员的积分就有48胜、47胜……2胜、1胜、0胜共49个积分情况,而50名运动员需要有50个不同的积分结果,这里“49个积分情况”与“需要50个积分结果”出现了矛盾,所以假设“没有运动员积分相同”是错误的,因此一定有两个运动员积分相同。

5.方法同第3题,拿球的种类组合可以有以下六种:足球、排球、篮球、足排、足篮、排篮,这六种组合看作六个抽屉,至少有9名同学所拿的球种类是一致的。50÷6=8.....2 8+1=9

6.则参赛男生46人。

7.至少要拿出10只才能使拿出的手套中一定有两双是同颜色的。

8.至少把这些水果分成了5堆。

分四种情况:

9.至少选出51个数,其中必有两个数的和是100。

10.46乘客带苹果。

11.提示:分值从0~100,共101种可能的分值,10101÷(0+1+2+……+100)=2……1,则至少有3人得分相同。

12.至少有335个人游览的地方完全相同。

13.则至少有5人植树的株数相同。

标签:练习题,抽屉,原理

版权声明:文章由 百问十五 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.baiwen15.com/answer/85619.html
热门文章