(1)一定;
$\because BE\bot AC$
$\therefore \angle BEC=\angle BEA=90^{\circ}$
$\because AE=CE BE=BE$
$\therefore \triangle BEC$≌$\triangle BEA\left(SAS\right)$
$\therefore BC=BA$
又$\because \angle ABE=30^{\circ}$
$\therefore \angle CBA=60^{\circ}$
$\therefore \triangle BCA$为等边三角形
又$\because CD\bot AB$
$\therefore BD=AD=CE=AE$
$\therefore \triangle BDC$≌$\triangle BEA$
$\therefore CD=BE$.
(2)①、③、④;
(3)已知:如图,在$\triangle ABC$中,点$D$、$E$分别在边$AB$、$AC$上,$CD\bot AB.AE=CE$,$\angle ABE=30^{\circ}$,
求证:$CD=BE.$
证明:作$EF$∥$CD$交$AB$于$F$,
$\because AE=CE,EF$∥$CD$,
$\therefore AF=FD($一组平行线在一条直线上截的线段相等,那么在其它直线上截的线段也相等),
$\therefore CD=2EF$,
$\because CD\bot AB$,
$\therefore EF\bot AB$,
在$Rt\triangle EFB$中,$\angle EFB=90^{\circ}$,$\angle EBF=30^{\circ}$,
$\therefore BE=2EF$,
$\therefore CD=BE$.
标签:triangle,ABC,AB