高中数学必修5知识点
(一)解三角形:
1、正弦定理:在中,、、分别为角、、的对边,,则有
(为的外接圆的半径)
2、正弦定理的变形公式:,,;
,,;;
3、三角形面积公式:.
4、余弦定理:在中,有,推论:(二)数列:
1.数列的有关概念:
(1)数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数N*或它的有限子集{1,2,3,…,n}上的函数。
(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。
(3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。
如:。
2.数列的表示方法:
(1)列举法:如1,3,5,7,9,…(2)图象法:用(n, an)孤立点表示。
(3)解析法:用通项公式表示。(4)递推法:用递推公式表示。
3.数列的分类:
4.数列{an}及前n项和之间的关系:
5.等差数列与等比数列对比小结:
等差数列|等比数列|
一、定义|二、公式|1. |2. |1. |2. |
三、性质|1.,|称为与的等差中项|2.若(、、、), 则|3.,,成等差数列|1.,|称为与的等比中项|2.若(、、、),则|3.,,成等比数列|
(
说实话线性规划没有什么公式
只是一些不等式的连列
而数列的公式
就是 等差:an=a1+(n-1)d
Sn=[(a1+an)*n]/2
=a1*n+n*(n-1)d/2
等比:an=a1*q^(n-1)
Sn=[a1(1-q^n)]/(1-q)
=(a1-an*q)/(1-q)
通项(求任意项):an=(a1+an)÷d(公差)-1
n(项数)
求项数公式n=(an-a1)÷d+1
这是一些应用`````
1+2+3+......+n=n(n+1)/2
2。 1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6
3。 1^3+2^3+3^3+......+n^3=( 1+2+3+......+n)^2=n^2*(n+1)^2/4
4。 1*2+2*3+3*4+......+n(n+1)=n(n+1)(n+2)/3
5。 1*2*3+2*3*4+3*4*5+......+n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4
6。 1+3+6+10+15+......
=1+(1+2)+(1+2+3)+(1+2+3+4)+......+(1+2+3+...+n)
=[1*2+2*3+3*4+......+n(n+1)]/2
=n(n+1)(n+2)/6
7。1+2+4+7+11+......+ n
=1+(1+1)+(1+1+2)+(1+1+2+3)+......+(1+1+2+3+...+n)
=(n+1)*1+[1*2+2*3+3*4+......+n(n+1)]/2
=(n+1)+n(n+1)(n+2)/6
8。1/2+1/2*3+1/3*4+......+1/n(n+1)
=1-1/(n+1)=n/(n+1)
9。1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+......+1/(1+2+3+...+n)
= 2/2*3+2/3*4+2/4*5+......+2/n(n+1)=(n-1)/(n+1)
10。1/1*2+2/2*3+3/2*3*4+......+(n-1)/2*3*4*...*n
=(2*3*4*...*n-1)/2*3*4*...*n
11。1^2+3^2+5^2+..........(2n-1)^2=n(4n^2-1)/3
12。1^3+3^3+5^3+..........(2n-1)^3=n^2(2n^2-1)
13。1^4+2^4+3^4+..........+n^4=n(n+1)(2n+1)(3n^2+3n-1)/30
14。1^5+2^5+3^5+..........+n^5=n^2 (n+1)^2 (2n^2+2n-1) /12
15。1+2+2^2+2^3+......+2^n=2^(n+1) – 1
还有什么柯西不等式就算了```````
我说不等式赶嘛??????????????
于是我疯了````````
标签:高中数学,必修